
1 A& Ma~h.s Mechs, Vol. 61, No. 4, 539-547.1997 pp. 
0 1997 Ekvier Science Ud 

PII: S0021-8928(97)00068-3 
All rights reserved. Printed in Great Britain 

0021-8928/97 $24.00+0.00 

THE NON-LINEAR OSCILLATIONS OF A SATELLITE 
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Plane non-linear oscillations of an artificial satellite-a rigid body-about its centre of mass in an elliptical orbit of small eccentricity 
are considered. It is assumed that three times the frequency of small oscillations of the satellite in a circular orbit is close to the 
frequency of revolution of its eentre of mass. Methods of classical perturbation theory are used to reduce the problem to that 
of a model system, described by a Hamiltonian which is characteristic for problems involving the motion of Hamiltonian systems 
with one degree of freedom in the case of third-order resonance. A detailed analysis of such systems is carried out. The theory 
of periodic Poincare motions and RAM-theory are used to transfer the results for the model system to the complete system and 
to apply them to the problem of satellite motion. The question of the existence, number and stability of periodic motions with 
period equal to three times the period of revolution of the centre of mass of the satellite in orbit is considered, depending on 
the inertial parameter of the satellite and the eccentricity of the orbit. It is shown that motions of the satellite beginning in a 
certain neighbourhood of its eccentricity oscillations are bounded, and an estimate is given for the size of that neighbourhood. 
8 1997 Elsevier Science Ltd. All rights reserved. 

1. STATEMENT OF THE PROBLEM. TRANSFORMATION 
OF THE HAMILTONIAN 

Plane non-linear oscillations of a satellite, treated as a rigid body, about its centre of mass in an elliptical 
orbit are described by the equation [l] 

(l+ecosu)d*yf/dv*-2esinv~/dv+o~sinyrcos\y=2esinv (1.1) 

where e is the eccentricity of the orbit of the centre of mass, v is the true anomaly, ~“0 = 3(C -,4)/B, 
where A, B and C are the principal central moments of inertia of the body, B being the moment of 
inertia about an axis perpendicular to the orbital plane and w is the angle between the radius vector 
of the centre of mass of the satellite about the attracting centre and the axis corresponding to the moment 
of inertia A. 

If the eccentricity of the orbit is small and o. # 1, Eq. (1.1) has a 2x-periodic solution [l] of the form 

y#=w’=$!y + O(e2> 
0 

which reduces, when e = 0, to the solution w* = 0 corresponding to equilibrium of the satellite in an 
orbital system of coordinates. The question of the stability of the eccentricity oscillations (1.2) has been 
investigated in detail [l, 21. 

The aim of this paper is to investigate non-linear oscillations of the satellite in the case when three 
times the frequency wg of its small oscillations in a circular orbit (e = 0) almost equals the frequency 
of revolution of the centre of mass. 

If we put 

IJI = yt* + q/(1 + ecos v), p = dqldv 

the equations of perturbed motion in the neighbourhood of the solution (1.2) may be expressed in 
Hamiltonian form with Hamiltonian 

H&P*+ ecosv 
2(l+ecosv) 

q2+~0~[(l+ecosV)X 
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Xsin 2W* + 4 sin 4 
l+ecosv l+ecosv 

-qsin2pf*] (1.3) 

Applying several canonical changes of variables, we reduce the Hamiltonian (1.3) to the form 
characteristic for problems involving non-linear oscillations of time-periodic Hamiltonian systems with 
one degree of freedom in the case of third-order resonance considered here [3]. 

Taking (1.2) into consideration, we can expand the Hamiltonian (1.3) in series 

H=Hz+HJ+Hq+... 
0.4) 

H2 = +p2 +wXq2) - 2;;;_vl) q2 + O(e2) 

2 ewisinv 3 &=-- 
3 w&l 

q + O(r’), Ha = Hi” + O(e), Hi” = -;wtq4 

where the dots stand for all the terms of order greater than four in q andp. 
Applying a linear canonical transformation q, p + q., p,, 2n-periodic in v, of the form 

4 = 4. 
- sin 

7=- 
+ 

e(cos 
vq. 20, vp.) 

&(wfJ - 1x40; 
+ 

- 1) 
O(e2) 

WO 

p=&p +a 
L 

+-!sinvq. -cosvp. +O(e’) 
l (Of-J -1)(4wi -1) 00 I 

we reduce Hz to normal form Hz1 

H2. =%Uq?+p?), h=wo+o(e2) 

We shall assume that the quantity h is close to l/3. In the e, w, plane the relationship 3h = 1 defines 
a resonance curve, represented by the solid curve in Fig. 1, whose equation is as follows [2]: 

0, = l/3 + (71/16O)e* + O(8) (l-5) 

Henceforth we shall put h = l/3 + e2P. 
Applying a canonical transformation q., 5, 

form -(x2* + ~2,)~/16. A change of variablesx 
+ x*, y. of the Birkhoff type, we reduce H$‘) to normal _ 

= e lx,, y = e-5, will then yield the following Hamiltonian 

We transform (1.6) to cp, r coordinates by the formulaex = $2) sin cp,y = $?r) cos cp, and eliminate 
summands with non-resonance harmonics in third-order terms by applying a near-identical canonical 

Fig. 1. 
e 
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transformation, 2x-periodic in v. This gives the following Hamiltonian 

541 

(l-7) 

Finally, making the change of variable cp, r + 8, p, where 

and introducing a new independent variable z = (3/32)t?v, we transform the Hamiltonian (1.7) to the 
following final form 

Y = ‘lo + e71 0% PI 29 e) (l-8) 

where 

y. =p2 +p3'2cos3&~p, ~=(32/3)f! (1.9) 

The function ‘yi in (1.8) is 2rc-periodic in 9, periodic in 2 with period T = (9/16)rtc2 and analytic with 
respect to all the variables in the domain 0 < p Q 1. 

2. INTEGRATION OF THE UNPERTURBED SYSTEM 

Let us consider the unperturbed system described by the Hamiltonian (1.9), which is typical for 
problems involving the motion of Hamiltonian systems with one degree of freedom and third-order 
resonance. The qualitative nature of non-linear oscillations in such systems, as well as the existence 
and stability of 6x-periodic motions, was studied in [3-6]. This part of the paper consists of a detailed 
analytical investigation of a system with Hamiltonian yo. 

2.1. The equations of motion corresponding to y. are 

dWdr=2p+$$$ cos30-p, dpIdr=3pKsin39 (2.1) 

We will indicate the equilibrium positions of system (2.1) and the nature of their stability [3]. The 
equilibrium position p = 0, which exists for any values of l.t, is stable when p # 0 and unstable when p 
= 0. If p 3 -9/32, there are two further types of equilibrium position, at which sin 38 = 0, and the 
equilibrium values of p are the roots (16~ + 9+34(9 + 32p))/32 of a quadratic equation. 

The equilibrium positions of system (2.1) corresponding to the larger root (pa) are stable, while those 
corresponding to the smaller root (p,,) are unstable. When p. = 0 the unstable equilibrium positions 
coincide with the origin (p.. = 0). When l.k = -9/32 the equation has a double root (p* = p** = 9/64); 
the corresponding equilibrium positions are unstable. 

Figure 2 shows the qualitatively distinct phase portraits of system (2.1) [3] in the plane of the variables 
x1 = J(2) cos 8, x2 = d(B) sin 8, for the cases p. < -9/32 (a), ~1 = -9/32 (b), -9/32 < l.t < 0 (c) and 
P = 0 (4, P ’ 0 (4. 

The stable equilibrium positions of system (2.1) are represented in Fig. 2 by singular points of the 
“centre” type, and unstable ones (for p# -9/32, p # 0) by singular points of the saddle type. When p 
= 0 (Fig. 2d) the origin is a compound singular point, whose neighbourhood is the union of six saddle 
sectors. The unstable equilibrium positions for p = -9/32 (Fig. 2b) are represented by compound singular 
points-degenerate saddle-nodes. 

The unstable singular points of the system are connected by separatrices, which separate the oscillation 
domains of the system (near stable equilibria) from domains of rotation. Trajectories in a domain of 
rotation encircle all the singular points of the system; the angle 8 increases monotonically along such 
trajectories. 

2.2. The system of equations (2.1) has a first integral 

ro(e,p) = h = const (2.2) 
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Fig. 2. 

using which we can eliminate 6 from the second equation of (2.1). Then the equation for p becomes 

dp/d(F(p)) = +3&, F(p) = p3 - (h + pp - p*)* (2.3) 

The upper sign in (2.3) corresponds to motion in the sectors 2xk/3 c 6 s n(2k + 1)/3 (k = 0, 1,2), 
where p is increasing, and the lower sign, to motion in the sectors rr(2k - 1)/3 =S Cl s 2rck/3 (k = 1, 2, 
3), where p is decreasing. 

The form of the solution of Eq. (2.3) depends on the number and multiplicity of real roots of the 
polynomial F(p). It follows from the form of F(p) that all its real roots are positive. 

After Eq. (2.3) has been integrated, the function O(T) may be determined from (2.2). 
Let us write down the solutions of Eq. (2.3) in the entire range of variation of the parameters lt 

and h. The eight subdomains indicated in the (l.t, h) plane in Fig. 3 correspond to the qualitatively 
distinct solutions of system (2.1). The subdomains are bounded by the straight lines l.r = -9/32, p = 0, 
the straight line h = 0 and the curves h = h,(lr), h = h*(p), corresponding to the energy levels at 
the equilibrium positions of system (2.1) for which p = 0 and p = p., p = p.., respectively, where 
hi(p) = p: + p. ‘* 
p.. + p.“!’ 

- ppt (p 2 - 9/32), h*(p) = p”,. - p.“.” - up** for -9/32 s lr < 0 and h*(p) = 
- pp.* for p 2 0. The curves h = h,(p) and h = h*(p) issue from a common point with 

coordinates (-9/32, 27/4096); the curve h = hi(p) and h = h*(p) issue from a common point 
with coordinates (-9/32,27/4096); the curve h = hi(p) cuts the Oh axis at h = -27/256. 

Fig. 3. 
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No motion is possible if h < 0 in the domain l.t < -l/4, or if h < h&) in the domain l.t 2 -l/4. 
The points of the straight line h = 0 (l.t c -l/4) represent the stable equilibrium p = 0 of system 

(2.1). In domains 1 and 2 (Fig. 3) and the part of the straight line l.t = -9.32 separating them we have 
oscillations near that equilibrium (see Fig. 2a-c), taking place in the interval p2 s p s p1 of the p axis, 
where p1 and p2 (~2 < pr) are the real roots of the polynomial F(p); the other two roots are complex 
conjugates. We introduce the notation 

a=J3(1+2p-p1 ‘P2h P=h2UP*P2) 

y=p-a', P=W-pd2+ylH. q=[(a--p2J2+yIK 

Using tables of integrals [7], we obtain the following expression from (2.3) 

P(t) = Ps? + P2P - (Pl4 - P2p)cnOJpqz) 
P+4+(P-qhQ&& 

The modulus of the elliptic cosine in (2.5) is 

4 = y2 (KP, - P2 j2 - b - sj2 I / (pd@ 

(2.5) 

(2.6) 

and the constant of integration is chosen so that at z = 0 the variable p should achieve its minimum 
value p = p2. The frequency of these oscillations is w1/3, where 

3dE 
w’ =2K(k,) (2.7) 

and K(ki) is the complete elliptic integral of the first kind. 
The points of the curve h = .hl(p) (for l.t 3 -l/4) represent stable equilibria of system (2.1) corres- 

ponding to p = p.. In domains 3 and 6 and on the part of the straight line p = 0 separating them (Fig. 
3) we have oscillations near these equilibria (see Fig. 2c-e), in which case p2 s p s p1 (pi and p2 are 
the real roots of the polynomial E;(p); its two other roots are complex conjugates). The function p(z) 
for these oscillations is defined by Eqs (2.4)-(2.6), and their frequency equals w1 (formula (2.7)). 

In domain 4 (Fig. 3), there are oscillations of two types corresponding to each value of p and h: an 
oscillation of the first type takes place in the neighbourhood of the stable equilibrium p = 0, and p 
then varies in the range p4 s p c p3; oscillations of the second type take place in the neighbourhood 
of the stable equilibria corresponding to p = p*, in which case p takes values in the range p2 s p s p1 
(see Fig. 2~). Here ~1, ~2, PS ~4, (~4 < ~3 c p2 -z pi) are the real roots of the polynomial F(p). 

For oscillations of the first type, it follows from Eq. (2.3) that [7] 

p(z)= P4CPi -P3l+P1@3 -p4)sn2u 

Pi -P3 +(p3 -p4)sn2 u 

where we have assumed that p = p4 at 2 = 0, and for oscillations of the second type 

p(z)= P2CPt -P3)--PdP1 -P2)sn2u 

PI -P3 -(Pl -P2)sn2U 

cw 

(2.9) 

where we have assumed that p = p2 at r = 0. In both of the last expressions we have introduced the 
new notation u = w&l - P3)(P2 - P4)1 1’2; the modulus of the elliptic function is k2 = [@I- P2)(P3 - 

P4)/(Pl - P3)(P2 - P4)1 . 
Oscillations in the neighbourhood of equilibria corresponding to p = p* take place at a frequency 

w2 = % xK-‘(4 )Z(p1 - P3 )@2 - P4 11% (2.10) 

and those in the neighbourhood of p = 0 at a frequency 02/3. 
To each point of domain 7 there correspond two motions (see Fig. 2e): oscillation in the neighbourhood 

of the stable equilibrium p = 0, in which case p4 G p s ps, and one of the revolutions for which p2 c 
P c Pl (Pl, P29 P31 P4 are the real roots of the polynomial F(p), where p4 < p3 < p2 =z pi). The behaviour 
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of p(z) for these motions and revolution is given by (2.8) and (2.9), respectively. The oscillation frequency 
and mean frequency of revolution are equal to 0)2/3, where q is given by (2.10). 

In domains 5 and 8 and on their boundaries-the straight lines p = 0 and p = -9132 (Fig. 3)-we 
have a revolution for each value of ~1 and h (see Fig. 2c-e). In these cases p2 s p c pl, where p1 and 
p2 are the real roots of the polynomial F(p) (the other two roots are complex conjugates). The function 
p(z) is defined by (2.4)-(2.6), and the mean frequency of revolution is w1/3, where w1 is given by (2.7). 

At the points of the straight line h = 0 with --l/4 c p < 0 (Fig. 3) we have a stable equilibrium p = 
0 and one of the revolutions (Fig. 2e). In both cases the polynomial F(p) in (2.4) has a double root at 
zero and two other real roots pl, 2 = (1 + 2~ + d(l + 4l.~))/2 (p2 c pl). The motion (oscillation or 
revolution) takes place with p2 c p G pl. Equation (2.3) may be integrated in terms of elementary 
functions, the result being [7] 

p(r) = 2p2 
1+2p-@&os3p~ 

(1 + 2p)2 sin’ 3p2 + 41.12 cos2 3pT 

where we have assumed that p(0) = p2. 
At the point h = 0, p = 0 we have (Fig. 2c) the unstable equilibrium p = 0, and motion along the 

separatrix defined by 

P(T) = &, B(r)=f 
[ 
(2m-l)n+acrtg~ ) 1 m=l,2,3 

At the points of the curve h = h(pl) (Fig. 3), where -9/32 < p < -l/4, we have two types of motion 
(see Fig. 2~): stable equilibria, at which p = p., and oscillation in the neighbourhood of the equilibrium 
p = 0. In that case the polynomial F(p) in (2.3) has a double root p = p. and two further real roots p1 
and p2, where p2 c p1 c p.. The oscillation in the neighbourhood of p = 0 occurs for p2 s p c pl. 
Equation (2.3) may be integrated in terms of elementary functions, the result being [7] 

p(r)=Pl(P~-p2)~in2u+p2(p,-pl)Cos2~ 
(p* -p2)sin2u+(p, -p,)cos2u 

9 u=$P* -PIMP* -P2)14 

where we have assumed that p(0) = p2. 
At the points of the curve h = h2(p) (p > -9/32, p f 0) we have unstable equilibria, for which p = 

p*.., and motion along the separatrices (Fig. 2c, e). The polynomial F(p) then has a double root p = 
p*. and two further real roots p1 and p2, where p2 < p.* < pl, If -9/32 < p < 0 (Fig. 2c), the value of 
p as the motion proceeds along the heteroclinic and homoclinic asymptotic trajectories varies in the 
ranges 132 s p < pit and p.. < p c pl, respectively. In both cases the function p(z) is given implicitly 
by the following expression [7] 

ln2 [ (PI -PXP** -P2)+J(P-P2)(P1 -P**N2 =9(p, -p )Cp -p2)T2 

(Pl - P,YP** -PI 
** ** (2.11) 

where p(0) = p2 for the heteroclinic and p(0) = p1 for the homoclinic asymptotic trajectories; p + p.. 
asz+ fm. 

When ~1 > 0 (Fig. 2e) the function P(T) on the inner (p2 c p < p,,) and outer (p.. < p c ~1) 
heteroclinic asymptotic trajectories is also given by (2.11). 

Finally, the common point (-9/32,27/4096) of the curves h = h,(p) and h = h2(p) corresponds (Fig. 
2b) to unstable equilibria of the system with p = 9/64 and motion along the separatrix defined by 

3. NON-LINEAR OSCILLATIONS OF THE PERTURBED SYSTEM 

We shall now investigate how the results of our investigation of the unperturbed system with Hamil- 
tonian ‘y. extend to the full system with Hamiltonian y (see (1.8)). 
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3.1. By Poincart’s theory of periodic motions [8], from every equilibrium position of the unperturbed 
system (excluding the case u = -g/32) other than the origin, if e is sufficiently small, a unique solution 
of the full system arises which is T-periodic as a function of z and analytic as a function of e. This 
corresponds in the original variables to 6x-periodic motion of the satellite. 

The unstable equilibrium positions of system (2.1) corresponding to the equilibrium value p = p.* 
transfer to unstable periodic solutions of the full system; this follows from the continuity with respect 
to e of the characteristics exponents of the corresponding linear equations of perturbed motion. 

Let us investigate the stability of periodic motions originating in the manner just described from 
stable equilibrium positions (corresponding to p = pJ of the unperturbed system. To that end, we 
first normalize the Hamiltonian ye in the neighbourhood of these equilibria. Let 8 = 8. + x (where 
8, is the equilibrium value of the angle Et), p = p, + y. Then the Hamiltonian y. may be expanded in 
series 

y. = yP + yi3’ + yi4’+. . . 

(2) 9 g 2 
YO =,P. x +(l+;K)y2, ~~3’=~p$x2y+~y3p;% 

YO (4) 
27 =-7p*x x 4 27 +zp* -X x 2 y 2 3 -=p* -354 y 

The dots stand for terms of order more than four in x and y. 
The change of variablesx = x1/a, y = ay,, a = d(6)pin/(8pi” - 3)“4 normalizes the quadratic part 

of (3.1), bringing it to the form 1/2CI(x: + y:), Q = 3/2py2(8p,‘” - 3)ln. Next, applying a canonical 
transformation x1, yi + k,r~ of the Birkhoff type, we eliminate third-order terms in the Hamiltonian 
and simplify the fourth-order terms. The required normal form of the Hamiltonian y. in the neighbour- 
hood of the equilibrium under consideration is 

G=~~(52+?2)+1C(52+~2)2+... 
4 

c=-$[~(z--3)~+3(9z~+6z+5)1p;~z-~, t=8p* x-3 

The quantity2 in (3.2) is positive in the domain u > -9/32 of existence of stable equilibrium positions; 
hence c < 0. 

If we now normalize the Hamiltonian yin the neighbourhood of the periodic solution of the complete 
system generated by the stable equilibrium under consideration, we obtain a Hamiltonian of the form 
(3.2) with the coefficients CJ and c corrected by quantities of the order of e. For sufficiently small e, it 
follows from the inequality c c 0 that the condition for the Hamiltonian y to be non-degenerate is 
satisfied in the neighbourhood of the periodic solution. Hence, by the Amol’d-Moser theorem [9, lo], 
the solution in question is stable in Lyapunov’s sense. 

3.2. We will now show that motions of the complete system, beginning in some finite neighbourhood 
of the origin, are bounded, and estimate the size of that neighbourhood. 

We introduce action-angle variables I, w in the domain of revolutions of the unperturbed system [ll], 
setting 

f(h) = (2x)-‘pp(e, h)de (3.3) 

where the integration is performed along the closed trajectory p = p(e, h) defined by (2.3). The inverse 
function to (3.3), h = h(o, is the Hamiltonian y. written in action-angle variables. 

Let us estimate the size of the neighbourhood of the origin outside which the non-degeneracy condition 
d2h/dZ2 # 0 holds in the domain of revolutions. Using (3.3) and (2.3), it can be shown that 

d2h 
y$= 

&J ca,tyo;aapq: & = “‘i” 8pK +3cos3e de 

0 2x 0 p~(2p+~p&~3e-~)3 
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Since the denominator of the fraction in (3.4) is positive in the domain of revolutions (a&p = deldz 
> 0), it follows that the integrand is positive on revolution-trajectories (RTs) on which p > 9/64. When 
that happens, d2h/dZ2 > 0, and the non-degeneracy condition holds. 

It can be shown that when l.t < 27/32 a RT passing through the point p = 9/64,8 = 0 exists. On this 
RT, 9/64 d p < RI, where RI, where RI is the unique real root (except in the case p = 33/64) of the 
equation 

p2-p 34 9 33 -pp=64 -.&-p 
( > 

in the domain under consideration. If l.t = 33/64, corresponding to h = 0, this equation has three roots: 
0,9/64 and 121164; then RI = 121164. 

Since the non-degeneracy condition holds on this RT it follows from Moser’s invariant curve theorem 
[lo] that the mapping generated by motions of the perturbed system over the period T has an invariant 
curve near the RT under consideration, provided that e is sufficiently small. For all trajectories of the 
perturbed system starting inside this curve, one has p(z) < Rt(1 + O(e)). 

Now let p 2 27/32. Since then p.. > 9/64, it follows that the circle p = 9/64 does not intersect the 
domain of revolutions, and the non-degeneracy condition holds for all RTs. Hence, by Moser’s theorem, 
invariant curves exist. Choose one of them, say, close to a RT, on which p does not take values exceeding 
2R2, where R2 is the maximum value of p on the separatrix (see Fig. 2e). The quantity R2 is the unique 
root in the domain under consideration of the equation 

P2 -P% -PP=PZ* +pz -w. (3.6) 

For all trajectories beginning inside the invariant curve, we have p(z) < 2R2(1 + O(e)). 

4. NON-LINEAR OSCILLATIONS OF A SATELLITE 

The conclusions reached in Section 3 concern the fairly wide class of systems described by a Hamil- 
tonian of the form (1.8). We will now apply the results to the problem of plane non-linear oscillations 
of a satellite. 

If one has equilibrium positions of the unperturbed system with Hamiltonian ‘y. (we again assume 
that l.t # -9/32, which in the original notation corresponds to l3 + -27/1024) corresponding to the same 
equilibrium value of p but distinct values of 0 (other than 2x/3), then the 6x-periodic solutions of Eq. 
(1.1) generated by these equilibria develops into one another when v is varied by 27~ and 4x. These 
motions correspond to the same 6x-periodic motion of the satellite, which occurs near the eccentricity 
oscillations (1.2). 

Corresponding to the boundary value /3 = -27/1024 between h domains with a different number of 
periodic motions, one has the following bifurcation curve in the e, ~0 plane 

q, = ‘/3 + (2137/5120)e2 + O(e“) (4.1) 

which is shown by the dashed curve in Fig. 1. For parameter values e and 00 such that the point (e, cc,,) 
is under the curve (4.1), there are no 6x-periodic motions of the satellite distinct from oscillations (1.2). 

For points (e, 00) between the curve (4.1) and the resonance curve (1.5), two 6x-periodic motions 
of the satellite distinct from (1.2) exist. They are generated from the equilibrium positions of the 
unperturbed system corresponding to p = p. and p = p*,, and are described by relations of the form 

(4.2) 

where o = p. and o = p.., respectively. According to Section 3, the first of these motions is stable and 
the other unstable. 

For values of e and u,, on the resonance curve (1.5) a unique (distinct from (1.2)) 6x-periodic motion 
of the satellite exists, described by an equation of the form (4.2). This motion is stable. The periodic 
motion corresponding to p = p.., is identical with the eccentricity oscillations (1.2) and is unstable. 

If the point (e, cua) lies above the resonance curve (1.5) the motion corresponding to p = pt. is again 
separated from the eccentricity oscillations (1.2) and we have two (distinct from (1.2)) 6x-periodic 
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motions of the satellite, described by equations of type (4.2); one is stable-for &J = $.-and the 
other unstable-for &J = -$,,. 

Any motions w = v(v) of the satellite beginning sufficiently close to its eccentricity oscillations \y = 
v*(v) remain in a finite neighbourhood of those oscillations. An estimate of the size of that 
neighbourhood was given in Section 3: 1 v(v) - v*(v) 1 d 3/2e5(1 + 0(e)), where 5 = JR1 if p < 81/1024 
and 5 = @Q, if /3 3 81/1024. 

Here the quantities Ri = R&) = Ri((32/3)p) (i = 1,2) are the roots of Eqs (3.5) and (3.6), respectively, 
while p for the relevant e and o, values is found from the equation 

* = l/3 + e2(71/160 + fi) + U(e4) 

This research was supported financially by the Russian Foundation for Basic Research (96-01-00220). 
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